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The differential equations of motion of a multicomponent compressible 
viscous heat-conducting mixture have been derived under the assumption 
that the hydrodynamic and physical-chemical characteristics in the stream 
are continuously differentiable [ l-4 I. 

In this paper we shall derive relationships for multicomponent VISCOUS 
heat-conducting mixtures when the effects of thermal diffusion and 
pressure-diffusion are taken into account. We shall also obtain relation- 
ships on surfaces of discontinuities (of density, pressure, particle 
velocity, temperature, constituents) to the approximation of boundary- 
layer theory. For the case of a homogeneous fluid the relationships for 
strong discontinuities were obtained in [ 5 I. likewise to the approxima- 
tion of boundary-layer theory. As examples, we shall treat the flow past 
a plane plate when leakage through its surface takes place and the evapo- 
ration of the fluid film is taken into account, and the flow past a sub- 
limating wall in an equilibrium gas flow. 

1. Derivation of conditions on surfaces of strong discon- 
tinuity in multicomponent viscous heat-conducting mixtures. 

When deriving the conditions on a surface of discontinuity we shall start 
from the equations of motion of a multicomponent mixture written in in- 
tegral form. 

1. ‘Ihe equation of conservation of mass of the ith component of a 
mixture is 

d s dM, 

dt 
PidT = dt (i = 2, . . ., N) (1.1) 

Vi’ 
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where Vi* is a certain fluid volume moving with the velocity field vi 
(vi is to be taken as the statistically averaged value of the particle 
velocity of the ith component of a mixture relative to some fixed co- 
ordinate system), p = nimi is the density of the ith component, ni is 
the number of moles in a unit volume, mi is the molar mass of the ith 
component, N is the number of components in the system. On the right- 
hand side of Equation (1.1) is a term which is due to the change of the 
mass of the ith component as the result of chemical reactions. 

2. When we sum Equations (1.1) over index i and make use of the law 
of mass conservation in the chemical reactions, then we obtain the equa- 
tion of conservation of mass of the mixture 

$\pdz=O 
3* 

(1.2) 

where V* is the volume of a fluid which coincides at the moment under 
consideration with the volumes Vi*, but moves with the velocity field 

N iv 

v = ZCI;Vk pi Gi=-s 
P 

P=: )JPPk 
k=l k=l 

where ci is the mass concentration of the ith component. 

3. The equation of conservation of momentum is 

d - 
dt ! 

pvdz = 
5 
pnda U.3) 

V* S 

where p, is the stress tensor on the plane surface, n is the normal to 
the plane, S is the surface bounding the moving volume V'. Equation (1.3) 
is written on the assumption that external body forces do not exist. 

4. lhe equation of conservation of energy is 

where e is the internal energy of a unit mass of mixture, ei is the 
partial internal energy of the ith component, ,$ is the thermal-energy 
flux-intensity vector, 

If the functions under the integrals are continuous, then from (1.1) 
to (1.4) we obtain the differential equations of motion of a multicomponent 
mixture. Let S be the isolated piecewise smooth surface of the discon- 
tinuity, moving with the normal velocity D and located entirely inside 
the volume V, which coincides at the moment under consideration with the 
volume v*, but moves together with the surface X.'Ihen, for any integrable 
function A(x, y, z, t), the following equation is valid: 
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(1.5) 

Noting that when volume V contracts to the surface Z the left-hand 
side of Equation (1.5) approaches zero uniformly [ 6 I with respect to 
time t, we obtain, using Equation (1.5) in Equations (1.1) to (1.4) 

PIG1 (fi - 2)in, 1) = PZci2 tD - Vin, 2) (i = I, . . ., N) V-6) 

Pl (D - hl) = Pz (D - i?‘nJ (1.7) 

Pl (D - 2/m) Vl -I- pn1 = Pz (D -. %l2) v2 +- Pn2 (1.8) 

p1 (D - rnl) (e, i-- $ vr2) -I- (pnlvl) - (Jpp w-4 
=P2 (D - G) ( e2 + + Q”) -t- (~~2~2) - (J& 

If we introduce into Equation (1.6) the densities of the mass streams 

Jt = pi (vi - v) = ~ivr, vi---‘-vi-v 

then Equation (1.6) may be written in the fona 

plcir (D - vnr) - Jin, 1 L p2~12 (D - Vn2) - Jin, 2 (i = I,. . ., N) (1.10) 

Relation (1.7) is the result of (1.10); note that in the derivation 
no assumption was made as to the properties of any particular medium. 

In distinction to the relations for strong discontinuities on a homo- 
geneous medium [6 I the relations (1.7) to (1.10) contain N- 1 addi- 
tional equations, expressing the law of conservation of mass of each com- 
ponent. Furthermore, the heat flux vector here depends not only on the 
temperature gradient, but also, generally speaking, on the local concen- 
tration and pressure gradients [3,4 1. Expressions for the vectors 
J.i (i = 1, . . . . 
physico-chemical 

N) andJp in terms of the macroscopic quantities and 
parameters of the mixture may be obtained either from 

the thermodynamics of irreversible processes [3,4 1 for arbitrary 
mixtures, or from the kinetic theory of inhomogeneous gases in a non- 
equilibrium state. Both derivations yield the same results: 

N 

Ji = f 2 mimkDik [OC< -f cf (pri - 1) v In p] - DiTv In T 
(1.11) 

(i = 1,. . ., N) 
kzzl 
k+i 
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J+ = - h$I’ -+ -$ $ 5 1% (V, - V,) + 2 h,,J, 
*=I i=l * k=1 

ni ci* = - rz m=___.~ 
n 

J.!. ci, 

mt 
: i 

k==l 

where ci* is the molar concentration; m is the average molar mass of a 
mixture; Dik are the multicomponent coefficients of diffusion, which may 
be expressed according to kinetic theory in the first approximation in 
terms of l/2 N(N- 1) b inary diffusion coefficients dSik of the various 
component pairs and the composition of the mixture; X is the coefficient 
of heat conductivity of the mixture; DiT are the multicomponent thermal- 
diffusion coefficients; hi and vi are the partial enthalpy and the 
volume of the ith component, respectively. 

In the case of mixtures of fluids (solutions, mixtures of gases) the 
expression for the stress-tensor p, in (1.8) is identical with the ex- 
pression obtained in the hydrodynamics of a homogeneous fluid if the in- 
fluence of chemical reactions on the stress tensor is not taken into 
account. The coefficients Dik, DiT, h and ,u depend on pressure, tempera- 
ture and the composition of the mixture, and will be referred to as 
known functions of the characteristics of the mixture. 

In the case of a binary ideal mixture containing components i and j, 
Expressions (1.11) and (1.12) assume a particularly simple form 

Ji = - Jj = - pgij ( VC~ + a,c$jV h p -j- z aTc$jv h T) (1.13) 

J,=--h~T~U*$Ji~(hi-hj)Ji Up=(ttZj-_i) 

Ci + Cj = 1 

where aT is the thermal-diffusion constant. 

( m; .+ ; t 3 
t (1.14) 

If no limitations are imposed upon the order of magnitude of the 
gradients of the macroscopic physical quantities (temperature, composi- 
tion), then when the Reynolds number approaches infinity, the relation- 
ships (1.7) to (1.10) are converted into the relationships for shock 
waves in an ideal (nonviscous non-heat-conducting) mixture composed of 
N components 

PlCil(~ - &a) = PzCiz(~ - Qm) (i = 1,. . *, N) (1.15) 

P1(~----*,) = Pz(J3-%2) (l.l6) 

PI(D--- %a) v1- p1n = Pz @ - %) vz - p2n (1.17) 

p1 (D -G) ( eI + f Q) - plvnl = p2 (D - Q) (es + +- Q) - p2vn2 (1.18) 
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Let us derive the relations on a surface of strong discontinuity to 
the approximation of the boundary-layer theory (R + w). 

Let S(x, y, z) = 0 be the equation of the surface past which the flow 
takes place. We shall assume the function S to be an analytical regular 
function, such that at any point the surface S= 0 has a non-zero radius 
of curvature. If we choose the traces of curvature to be the coordinate 
system x, z on the surface S = 0, then the system of surfaces parallel 
to the surface S = 0 and the family of unfolding surfaces, formed by the 
normals to the surface S = 0 along the coordinate lines n, z, form a 
triply orthogonal system of surfaces [7 1. ‘lhe linear coordinate along 
the normal will be denoted by y. In this triply orthogonal curvilinear 
coordinate system we obtain relations (1.7) to (1.10) for R c\r 0(1/J)*, 
where 1 is a characteristic length, 6 is the thickness of the boundary 
layer. bitting the derivations, the results are 

[PC{ (D + u m p + w ‘8Dr - V) - Jjr] = 0 (i=i,. . .) N) (1.19) 

[p(D+u~p+w~y-v)]=O - ! 1 ;Ti 
[PI = o(G) 

[PtD+uu.p+w~r--)a+P~]=O(~) 

(1.20) 

(1.21) 

(l.22) 

[ 
p(D+uuaP+wtI.r-v)w+p~]=Oi~) (1.23) 

II P(D+u~p+w~r--)(e+~)+p(ufpdP+w~r-v)i- 

+p$rv)-J;]=O(+) (1.24) 

or, if we introduce the enthalpy of the mixture h = e + p/p 
(1.25) 

C 
~P+u~P+w~y---u) h-t- 

( 
v)+&(v)-J+O(+) 

Here and in what follows, the square brackets will represent the jump 
of the quantities therein: /3 is the angle in the plane z = const between 
the tangent to the discontinuity surface at a given point and the tangent 
to the contour of the body at the point of the same x; y is the angle in 
the plane x = const between the tangent to the discontinuity surface at 
a given point and the tangent to the surface of the contour at the same 
z 

(1.26) Ji, = $5 
l 

mimxDik af! - Di 
Taln?’ _ 

k=l 
k+i 
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Note that to the approximation of boundary-layer theory the effect of 
pressure diffusion drops out of Expressions (1.26) and (1.27). In the 
case of a binary ideal mixture the-expressions for Ji, and 
(1.24) and (1.25) assume a particularly simple form 

a In T Jig = -Jig = - pSzJij (2 + 3 czTcicj T) 

J,, = - h $ + UT -f Jj; -I- (ki - h,) Jig 

J Qy in (1.19), 

(1.28) 

(1.29) 

In the case of a homogeneous fluid the relationships (1.19) to (1.25) 
become the known relationships for plane parallel motion [5 I. 

In the case of an inhomogeneous viscous heat-conducting fluid, rela- 
tions (1.19) to (1.25) alone are not sufficient for a single-valued 
transition through the surface of discontinuity. This was noted to be 
the case for a homogeneous fluid in [S 1. For a single-valued transition 
through the surface of discontinuity it is necessary to impose additional 
conditions. 

In the case of a sufficiently dense viscous heat-conducting mixture it 
is natural to assume equality of the tangential components of the 
particle velocity at the discontinuity surface, and equality of the 
temperatures on both sides of the surface of discontinuity. For R + 00 
these conditions assume the form 

Ul = U2' WI = q, T, = T, (1.30) 

Ihe additional relationships for the concentration of gas components 
on the discontinuity surface may be different and may be determined from 
the physical nature of that surface. From the theoretical investigations 
18 1 and many experimental results (see, for example, [ 9 1 1, it follows 
that the process of evaporation of gases in a stream takes place according 
to the kinetics of diffusion, i.e. the partial pressure of the gases on 
the surface of evaporation is equal to the saturation pressure for the 
temperature of the surface. Consequently an additional relation in the 
case of evaporation will connect the pressure to the temperature 

Pi = f(T) 
where pi is the partial pressure of the gas on 
and T is the temperature of the surface. If we 
that the latent heat of evaporation 1 does not 
then [ 10 1 

(1.31) 

the evaporating surface 
approximate and assume 
depend on temperature, 
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pi = exp ( -J&-t+ (1.32) 

where a is a constant for a given substance. In place of (1.31) it is 
convenient to have a relation between the mass concentration ci and T on 
the surface of evaporation, Using the equality cif = pi/p,. we obtain 

(1.33) 

where p is the static pressure of the mixture on the surface of evapora- 
tion (in the approximation of boundary-layer theory 8p& = 0 and p = p, 

is the pressure outside the boundary layer). 

Under certain conditions, which may be determined only after the 
evaporation problem is solved, the pressure of the gases in some regions 
of the surface of evaporation may reach the outside pressure p,. Then 
boiling will begin in these regions and an additional condition on the 
surface of discontinuity in these regions well be 

pi=poJ (1.34) 

Since the external pressure varies along the surface of discontinuity, 
then because of (1.31) and (1.34) the temperature will also vary along 
the boiling surface. 

In the case of sublimation of certain substances, for example, 
graphite, intensive evaporation begins at a certain temperature T 
characteristic of a given substance. At a surface temperature sma r ler 
than T, the evaporation may be neglected. In this case, in addition to 
(1.301, we may establish the condition T, = T2 = T*. The composition on 
the surface of sublimation in this case is determined during the process 
of solution. 

In the case of strong variations of the outside pressure along the 
body contour at the points of the body where the pressure is greater than 
the pressure of the triple point of the phase diagram, but smaller than 
the pressure at the critical point, the body, for sufficiently great 
heat flows, will melt on the side to the gas, accompanied by evaporation 
(or even by boiling) of the fluid film; in the case of small heat flows 
it will sublimate. At the points where the pressure is smaller than the 
pressure at the triple point, the body will sublimate. Consequently, in 
the general case, lines will form on the surface of the body dividing 
the regions of melting with evaporation and the regions of sublimation. 
Ihe location of these lines is not known beforehand and must be found in 
the process of solution. Because of the assumptions (1.30), relations 
(1.22) to (1.25) are significantly simplified: 
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(1.35) 

or 

(1.36) 

(1.37) 

As an example we shall write down the set of final conditions, which 
determine the single-valued transition through the surface of evaporation 
from the fluid phase past which a mixture of gases flow. Combining con- 
ditions (1.19), (1.20) and (1.37), we obtain 

P(D$utanp-twtanr-v)(l-Ci)-f-Ji,=O 

pc,(L)+utarip-~wtan~-u)-J~,=O (k=l,..., i---1,i+l,...,N) 

(1.38) 

where quantities without indices refer to the gas mixture on the surface 
of evaporation, the quantities with index 1 refer to the liquid phase on 
the surface of evaporation and those with index i to the vapor components. 
Direct counting of conditions (1.38) shows that they are sufficient for 
a single-valued transition through the surface of evaporation. 

'Ihe compatibility conditions on the surface of combustion may also be 
obtained from conditions (1.7) to (1.10) in ~ltiple-c~ponent mixtures 
by adding additional assumptions about the kinetics at the front of com- 
bustion. 

2. Exatapple 1. Let us consider the flow past a flat plate with diffusion 
of a fluid through its surface when taking into account the evaporation 
of the film. 

Let it be assumed that a fluid diffuses through the surface of a 
plate, past which flows a uniform plane parallel stream of gas. This 
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fluid forms a thin film along the plate which is dragged by the outside 
stream. If the outside stream is a hot gas, then the liquid film will 
evaporate intensively. thereby diminishing the heat flow directed to the 
wall (shielded cooling). The solution of this problem is reduced to the 
solution of a system of equations of the boundary-layer type for a binary 
mixture gas-vapor in the outside stream 

and the boundary-layer equations for a liquid film 

These systems of equations may be solved using the following boundary 
conditions: 

1) in the stream at infinity 

(2.3) 

2) on the surface of evaporation (D = 0) 

P1(~ltanp-vvl)(l--cO)- 
dC 

Pl%)lZ qj = 0, 
au1 aua 

IL1 37-=‘12ay 

Plt~l~P--v1)=P2(~2~~P--2), u = Ul, T1 = Te = To (2.4 
aT% 

pd (To) (u,t= P - VI) = ha - 
8Y 

31 on the porous plate 

ug = 0, 
PO, YCOUCQ ?G 

v2=- ~ 
( ) 2P2 5 

3. w;=h, (2.5) 

where the index a0 refers to the values of the parameters outside the 
boundary layer, the index 1 to the binary stream in the boundary layer, 
the index 2 to the film, the index 0 to the still unknown values of 
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concentration and temperature on the surface of evaporation, the index 
to to the values of the quantities on the wall; u and v are the components 
of the velocity along the X- and y-axes, respectively. along the plate 
and its normal, c is the concentration of the vapor, h(l) and h(*) are 
the partial specific enthalpies of vapor and gas respectively, al and a2 
are the molar masses of vapor and gas, respectively, B is a given 
dimensionless constant connected with the mass dispersion of the liquid 
Q, through the surface of a plate of length I given by the formula 

The following assumptions were made in formulating this problem: the 
motion of the film and of the binary mixture under the film is laminar; 
there are no external mass forces; the effect of thermal diffusion is 
small and may be neglected in comparison with the ordinary diffusion in 
the diffusion equation and in comparison with the heat conductivity in 
the energy equation. The feeding of the liquid through the plate takes 
place according to the special law 

If, further, we make the assumption that P, = P2 = L = 1, then it is 
easy to note that the equation of diffusion and the equation of energy 
allow the following integrals: 

where a and p are constants of integration. The first two integrals are 
direct generalizations of the Crocco integral for the case of a binary 
stream. 

Investigating this case further, to simplify the calculation we shall 
look for a solution of the system of equations (2.1) and (2.2) in the 
form 

Pi”i = ‘Pi’ (?) * 
v, ‘Ia 

PiVi = ‘12 uy ( 1 [Wi’ (?) - ‘Pr ($19 hi=ai+piUi-~ (i = 1,2) 

c = a + PUl (q), q = _& ( ) ll’y 
vcox 

where the density and the velocity components II and v are made dimension- 
less with respect to p, and u,, respectively, and the enthalpies 
hi (i = 1, 2) with respect to a_*. Substituting Expressions (2.8) into 
Equations (2. l), (2.2) and boundary conditions (2.3) to (2.5)) we arrive 
at the following boundary-value problem: 
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(2.9) 

qq (1 -co) (1 - 24’) = 
i3U ( > p 85 f (c, - co), co = ‘ft (To) (2.10) 

l(T,) cpl(?") - p fi h20--;*--'2"*a - 

( )C 

h,-- h,(2) +'/2(2-u*)2+c,(ho(a)-h,(l)) 

2 dtl 1 1 - u* 1 
where the latent heat of evaporation l(To) is measured in units of u_‘, 
p in the units of p_; es = @To) is the short notation of the vapor 
pressure curve. 

Every equation of (2.9) is of the third order (because Piui = sbi’~ 
and, furthermore, I*, u*, co and To are four unknowns. ~lationships 
(2.10) give us exactly ten conditions. After this boundary problem is 
solved, the fields of concentration and of enthalpy are determined from 
the equations 

co - c& Lu - co 
C= 

1-u* + i----u’ 
(2.11) 

h _ h~o-u*h~--/#.P (1 -z&u+) - hJ + ‘12 (I- .*a) 
1-- 

1 - u* 4 hoz 
1 -u’ 

ul_ g 
2 

(2.12) 

ha = h, + 
h20--hh, f VZU*~ u22 

u’ 
u2- - 

2 
(2.13) 

To solve the problem (2.9) to (2.10) we shall introduce a new 
dependent variable w = ~du/~~, and we choose u to be the independent 
variable [ 11.12 1. Then, in terms of these new variables, we have the 
following boundary-value problem: 

d$ ui 
q + Pi!-% 2< = 0 (i = 1, 2) (2.14) 

01 fi) = 0, ol(w*)= oa(u'). 02'(zb')= 02'(u'), ~2' (0) = ‘/$B 

01’ (CP) (1 = co) (1 - ZP) = 01 (ZP) (co-c,), co = 9 (To) 

01’ (u’) 2 (To) -= 01 (u*) A (To, u*) (3.15) 

where 

n (To, uf) = %a-- ho@) + ‘/a (I - u*2) + cm (ho@)- !Q,(~‘) h&$ - 12, - 1/2u*2 

1 -u* 
-- ._^ -_I- 

u* 
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The system of two equations of the second order (2.14) with three un- 
known parameters ti*, co and To with the boundary conditions (2.15) has 
to be solved with the help of seven conditions (2.15). Consequently it 
is expected that a unique solution of the problem will be obtained. To 
simplify the solution we shall assume that the quantity Pi~i is constant 
in every region. Without restricting the generality of the solution we 
assume 

PQh= 1, ~2~2 =KZ 

We shall look for the solution of the problem in the form 

01= o"c @I, o2 = Katiyz (a'-*~~~) 

where 0; (u) is the single-parameter family of solutions of equation 
2ow”+ a = 0, determined for u < 1 and satisfying the condition 
o;(1) = 0, G+(P) is the solution of a Cauchy problem: 

200” I_ u = 0, oy, (0) = 1. oy, ’ (0) = tanpd 

(both families of the solutions oCo and orz have been studied in [51). 
where a is an additional parameter subject to further determination. 
With function or so chosen, the boundary condition or(l) = 0 is satisfied 
automatically. The remaining conditions (2.15) give a system of’six 
transcendental equations 

ocO’ (u*) c* -- cm WC- (U’) A (2’0, u*) 
WC”0 = (1 -co) (1 - u’) ’ o,“o= 1 (To) ’ co = $ (To) 

for the determination of six unknown quantities: C, IX*, Q, y2, co and ToU 
The functions wCo(u) which do not vanish between 0 and 1, are given by 
the formula 

where uo(yl) are the zeros of the functions wrl, (u). Therefore, for 
these functions the angle y,(C = yl) and 

serve as parameters instead of C. 

The values of the functions cllyl(u) and u,(y,f are adopted from t 5 1 
in the form of a table, which is supplemented by the values of the deri- 
vatives w,{(u). 

For large values of tan %I the asymptotic representation oYl(u) may 
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be used [ 5 I. Then we obtain 

WC0 (u) = x--%3, (UX), ocO’ (u) = .r%0, (UX), x = 2.600 (2.17) 

where o,(u) is the solution of the CauchY problem 

2oo”+u=O, 0 (0) = 0, 0’ (0) = 1 

The corresponding relation 

o . _,%‘(W OcO’ (u.) 

WC (u 1 00 (U’X) 

for large tan yI does not depend on the parameter Y1. Functions 0; (~1, 
having another zero in (0, 1). are equal 

ocO,(u) = oiO (u) (C = E) 

where the functions o&O are the solutions of the boundary-value problem 

2oo”+u=o, 0 (E) = 0, 0 (1) = 0, (0 < E d 1) 

and tables of these functions are given in [ 5 I. Since for yI = n/2 and 
g = 0 the integral curves coincide, the functions (2.17) may be used in 
this case in place of the functions o,,~(u) and o,,“‘iu). 

Direct determination of parameters C, u*. a, yp, c,, and To from the 
system (2.16) requires extensive calculations for each group of given 
parameters. However, if we apply a semi-inverse method of solution to 
the system (2.161, then system (2.16) may be solved consecutively without 
difficulty. Indeed, let the quantity u l be given (the approximate value 
of the dimensionless velocity u l on the surface of evaporation may be 
assumed to be equal to the value u l disregarding the evaporation from 
[ 5 I). Then from the last three equations (2.16) we find the values co, 
T,, and C at once. Knowing u* and C, we find a and yZ from the first two 
equations of (2.16) using a graphical method. The third relation will 
give the value of the parameter of inflow B corresponding to a given value 
u* and given values of the parameters of the problem. Two or three trials 
in the choice of IL* lead to the desired value B. 

In an analogous waay the system (2.16) may be solved by choosing c,, 
(the concentration on the surface of evaporation). Upon solution of the 
system of equations (2.16). from Equations (2.11) to (2.13) the fields 
of concentrations and enthalpies and the coefficient of friction are 
found : 
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and so is the heat flow q, toward the plate 

qw vq = lip 5, h, + VZ~*~~& 

PCCPCO u* 

where h2u - h,,, is the dimensional difference of enthalpies of the liquid 
on the surface of evaporation and on the wall. 

3. IWmple 2. Let us investigate the sublimation of a plane wall in a 
uniform gas flow. Let a uniform gas stream move along a heat-conducting 
wall with a velocity IA,+ If the static pressure pb3 is smaller than the 
pressure at the triple point of the phase diagram of the wall substance, 
then, depending on the parameters of the oncoming stream and the condi- 
tions of the heat exchange on the other side of the wall, the surface of 
the wall whi6h is directed toward the gas will sublimate (evaporate. by- 
passing the liquid phase) or, if the pressure is larger the vapor pres- 
sure of the substance of the wall (if such exist) it will condense from 
the stream immediately into the solid phase. If the x-coordinate is 
measured along the wall, and the y-coordinate normal to the wall, then 
this problem will reduce to the solution of the system of equations for 
the non-steady (because of the change in one boundary of the wall) binary 
boundary layer and of the equation of heat conductivity in the wall 

(3.2) 

with the following conditions: 

1) in the stream of infinity 

u = Ua, h = h,, c -- cm (3.3) 

2) on a yet unknown surface of sublimation 

ae 
p (I) - v) (1 - co) = $312 - , 

@?i 
p(L)-~)=P,~, 7.4 = 0. T z T1 = T, 

co = 9 (TOI 

3) in the wall at infinity 

T;-= T_, (3.5j 

where index 1 refers to the parameters of the wall, index 0 to the Para- 
meters on the surface of sublimation, which are known only after the 
problem is solved. The remaining notation coincides with the notation of 
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section 2. 

In writing the equation of heat conductivity in a body (3.21, the 
assumption was made that the thickness of the thermal boundary layer in 
the body is sufficiently small compared with the characteristic length 
of the wall. Therefore. in the equation of heat conductivity the deriva- 
tives with respect to x may be neglected relative to the derivatives 
with respect to y. 

In addition to conditions (3.3) to (3.5) it is necessary to write the 
initial conditions of the problem. 

If we limit the investigation to the particular case where P= L = 1 
and look for the temperature of the surface of sublimation, then the 
solution may be obtained in closed form by making certain assumptions. 
Let us make the basic assumption: that the velocity of propagation of 
the surface of sublimation D depends only on the x-coordinate and does 
not depend on time. Thereby is established at each point of the surface 
a particular stationary mode of sublimation depending on x. The condi- 
tions under which this assumption is fulfilled will be shown below. Then 
the solution of the equation of energy diffusion and the equation of 
heat conductivity. taking the boundary conditions (3.3) to (3.5) into 
account, will be 

T1 = T-O1 (q,), 
hl(1”_,) 

q = 2 (y - ot), 11 = ; (?/ - % 
vcoz 

x1 = p1 (T-1 Cl (T-,1 

where the function 8,(11) is the solution of the boundary-value problem 

which upon integration by two quadratures finally becomes 113 I 

n 

c L (W d0l d%l 
1l=& Jfcel>--M(l) ’ 

Jlf (1) - M vh) 
drll L (61) 

where 

hl (Tl) = hl CT_,) L (f.ll), PI G“d cl V’d = PI U’_cJ CI (T,) N (01) 

fif (01) = $ N (81 dfll) 

(3.8) 

In the solution (3.6) the quantities with index 0 are unknown and 
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must be determined from conditions (3.4). which yield two transcendental 
equations 

co-c, H, - ho(‘) + c, (h,(2) - ho(‘)) 

-c-q= 1 Vi,) + CI CT_,) T-, [M (n) --M (I)1 ’ 

for the determination of the concentration co and 
the surface of sublimation. From the system (3.9) 
temperature of the evaporating surface approaches 

co = li, (To) (3.9) 

the temperature To on 
it follows that the 
the temperature of 

boiling only for H, 3 m, i.e. in the case of infinitely great heat inflow 
from the gas. 

Let us show now under what conditions the solution obtained above is 
valid. Consider the solution of the problem (3.1) to (3.5) in the follow- 
ing form (the normal velocits of propagation of the surface of sublima- 
tion does not depend on time): 

(3.10) 

where velocities u and v and densities p and p1 are measured in terms of 
the quantities u, and pm. The substitution of Expressions (3.10) into the 
equation of motion yields 

where r = rgt/l. The first term on the right-hand side of this equation 
may be neglected. since for all condensing media p/pi w ld’ * 10s4. 
The second term on the right-hand side is also small, Since the character- 
istic time i/u, for all except very small velocities is small. This 
approximation physically corresponds to the obvious fact that the local 
acceleration produced by the motion of the surface due to sublimation is 
small compared with the convective acceleration. 

The last term in Equation (3.11) is small Only for Sufficiently Small 
initial intervals of time. However, since this term contains a small 
number 1/p 1 - lO_‘~ 10m4 as a multiplier, the intervals of time for 
which the last term on the right-hand side of (3.11) may be neglected 
may, in effect, extend over several tens of seconds. BY these approxima- 
tions the Blasius equation is obtained: 

(3.12) 
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Tha continuity equation is satisfied to the same approximation. as is 

easily shown by substituting into it Expressions (3.10). The boundary 
conditions (3.3) to (3.4) are satisfied exactly. They give 

u(w)=l, u (0) = 0, 
du 

q (i -c*) = (cm-co) p’ ;T;1 

cp@) 
2 1 (TO) + ~1 (T-1 T- [M (n) - M (I)]} = -- p’ $ [a, _ b(a) + cm (h&a) _ b~)~ 

Consequently, when the aasumptfons enumerated above are satisfied, as 
a raault of which the right-hand side of Equation (3.11) may be neglected. 

(3.13) 
co = 9 Pa) 

the solution of the problem of sublimation of the wall is established 
for constant velocity of propagation of the surface of sublimation, de- 
pending only on the coordinate r(D+ l/ 4%). 

To solve this proble let us introduce a new variable w = ~‘~~/~~ and 
choose as independent variable a nondimensional velocity a. Then we ob- 
tain from (3.12) and (3.13) 

The solution of this problem will be (pap = 1) 

U 

(3.15) 

where the function 

. I 

Kn- h,(a) + coo (hJa’ - h,(l)) 
u, -’ = 17?‘*, + cl (T_) T, ~~~-~~’ co = 4 0’0) 

se(y) is calculated in [ 5 1 and is given in the 
table. From the last three euuations c,,, To and the angle y are easily 
determined for every ensemble of given parameters. Knowing y from the 
tables, we find a0 and then the profile of the velocity a@). 

The fields of concentrations and temperatures in the gas as well as 
in the body are defined by EQUatiODS (3.6). The coefficient of friction 
is found from the equation 

The values of the function q,-312 ty) are given in the table. In the 



308 G.A. Tirskii 

TABLE 

:%i7 
1:053 
1.078 
1.102 
1.124 
1.144 
1.161 
1.175 
1.183 
1.193 

:::i; 

- 

I - 

- 
! - 

- 
I - 

, 
-tso 

0.2679 
0.2655 
0.2583 
0.2466 
0.2305 
0.2103 
0.1861 
0.1580 
0.1259 
0.0899 
o.u500 
0.0060 
0.00 

u %o” 
-- 

, 
%oo 

$2 

0:e 

1.115 1.00 

1.226 

if: 
1:o 

1.332 1,429 
1.506 

::: 1,581 

:*i 
l1%! 

1:88 11707 1.708 

0.5774 
0.5684 
0.5431 
0.5043 
0.4538 
0.3936 
0.3238 
0.2431 
0.1529 
0.0526 
0.00 

, 
=4,0 

- 

i - 

k%7 
0.9690 
0.9357 

0.8941 
0.8457 
0.7915 
0.7320 
0.6676 
0.5966 
0.5251 
0.4469 
0.3641 
0.2764 
0.1833 
0.0847 
0.00 

1.768 
1.942 
2.1U6 
2.258 
2.398 
2.525 

Y% .7 
3.816 
2.880 
2.925 
2.952 
2.950 

: 098 
0:190 

iKE9 
0:897 

0.277 0.844 
0.359 0,789 

0.435 0.505 %f 
0.570 01614 
0.629 0.551 
0.680 0.487 

0.725 0.763 %: 
0.794 01276 

- 

I - u 

005 
1:o 

i-g 
2:5 

;*z 
4:0 
4.5 
5.0 

1.00 1.732 0.818 0.199 

3:466 ;*gg 

1.698 
:*z 

1:5 1.55 

0.834 0.117 

1.618 1.527 0.842 0.843 0.031 0.00 
4.192 1.404 

4.860 1.280 
5.462 1.147 .p 

i 
5.997 1.005 
6.458 0.855 -90 
6.842 0.695 
7.143 0.525 

-75 
-60 
-45 

- -30 
--15 

1: 

:z 
60 
rl 

7'- 
2 

00 25 
0:52 

s.jl; 
2.67 

0.83 1.32 
1.20 0.762 
1.60 0.494 

I 

- 

! - II 2.08 0.334 
2.73 0.222 
3.80 0.135 
5.75 0.0725 
11.0 0.0274 

5.5 

Z8 
- 

7.357 0.342, 
7.477 0.150 
7.50 0.00 
- - 

0 1.00 

:*z 
1 .I98 

0:s 
1.895 
1.585 

case of large heat inflows from the gas tan y e 00. Using the asymptotic 
representation of the function uo(y) = 2.608 tan’y, we obtain for the 
coefficient of f,Fiction of a strongly sublimating wall. the simple equa- 
tion 

cf j/%X = 0.475(tan~)-~ = 1.2385 
-%o 

From this equation it is seen that when boiling is approached the 
coefficient of friction approaches zero. This effect of diminishing the 
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coefficient of friction due to an increase of the intensity of evapora- 
tion is analogous to the effect of decreasing the coefficient of resist- 
ance of friction by blowing gas into a boundary layer 1141. 
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